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Abstract 

          Soil analysis, and the subsequent methods used to undertake that analysis is a domain 

of agriculture that has not undergone much change in the last several decades. Most of the 

analytical methods we still use were developed using “wet chemistry” means and this is largely 

still true today. However, these methods are difficult, costlty and time consuming. Additionally, 

there is variability in the results that is introduced by several individuals whom handle the 

sample and complete the analysis. Every step from the collection and storage of the soil 

sample, the production of reagents, to the accuracy of the measurement of soil mass, reagent 

volume, spectrophotometric measurement, and use of proper standards. This variability is hard 

to control for, yet researchers and producers trust these analysis almost completely. We 

suggest that a hyperspectral (visible and near infared) reflectance approach, using machine 

learning and correlative datasets could be a way to remove much of this variability and provide 

a much more cost effective, spatially relevant solution that would revolutionize precision 

agriculture. Herein, our approach is discussed.   
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Materials and Methods:  

          Soil samples were collected on site in a grid spaced throughout a field in Northwest 

Montana at the appropriate timing and in the agricultural cycle such that representative levels of 

Nitrogen (N), Potassium (K) and Phosphorous (P) were present. The samples were homogenized 

then scanned in the field using an Malvern Panalytical ASD LabSpec Hi-Res4 spectrometer 

(covering the range of 400-2400nm). These samples were also then placed in sealed paper bags, 

then sent to KSI Laboratories to have the nutrient levels measured using Mehlich 3. 
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Introduction 

 The problem of variability in soil nutrient analysis has been studied for years by many 

industry experts and academics; so far, they have been unable to decipher and successfully 

commercialize hyperspectral (visible and near infrared, 350-2500nm) soil sensing. Many studies 

have undertaken years of testing to account for the variability that has a dramatic impact on the 

precision of resulting recommendations. The main tradeoff we have identified is between 

accuracy of testing parameters and actionability or usefulness of collected soil data at the field 

scale. The primary deficiency in most soil analysis data is in the lack of sufficient data to show 

across-field variability and identify trends and "problem" areas. Understanding where amendment 

needs to be applied is a central theme of precision agricultural practices that gives them 

value(Ferguson et al., 2015; Mueller et al., 2001; Schloeder et al., 2001). Traditional soil testing 

is too prohibitively expensive, in time investment as well as analysis cost, to accomplish this. 

Greater quantities of granular raw data (more samples/unit area) are required to generate more 

accurate recommendations in a timely fashion, resulting in improved precision applications 
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(Mueller et al., 2001). Acquiring large data sets using traditional soil analysis is prohibitively 

expensive. Test prices vary by lab, region and nutrients tested. In the US alone, tests can vary 

from $6.00 to $65.00 and generally do not include nitrogen analysis which can cost an additional 

$15-35.00 in the US; other countries have basic soil tests costing upwards of $135 USD(Court 

Hill Farm Research Ltd, 2022; UC Davis Analytical Lab, 2022; Wallace Labs, 2022). 

Hyperspectral imaging provides a lower costs solution resulting in more data points, dramatically 

increasing efficiency and precise input recommendations. Data resolution being improved, cost 

is lowered; all while accuracy remains highly corelative to lab results. "Big Data" approaches are 

often associated with multiple inter-related data sets (weather/climate, chemical soil tests, satellite 

imaging, LIDAR, yield monitoring, etc.) being leveraged to understand trends and more accurately 

predict outcomes. Significant computing power to model this data, validation with diverse cropping 

systems data sets or "ground truthing", and a lot of time is required to create products that are 

genuine, and actually make precision agriculture, more precise. To farmers and land managers, 

reliable data is essential to manage performance and identify areas of improvement. Even with 

all the best algorithms and data analysis techniques, models are only as good as the data that is 

used to create them. Hyperspectral soil analysis provides a cost-effective method to obtain far 

more data sets per acre (increased data density per unit area) for a much lower net cost to the 

grower, compared to traditional soil analysis methods. In one Montana trial, we acquired 81 data 

sets versus 3 data sets for the same cost (Hubbard Field Trial 2018-2021). More soil samples 

aren’t the solution, precise and actionable data is the solution. 

Identifying the Problem with Traditional Soil Testing 

Soil analysis and subsequent nutrient management has always been an area pivotal to 

the productivity of cropping systems.  Accurate prescription maps are essential for effective 

variable rate fertilization (Ferguson et al., 2015; Sawyer, 1994).  Grid soil sampling has most 

frequently been used to develop these prescription maps (Mueller et al., 2001). Past research has 

indicated several technical and economic limitations associated with this approach.  There is a 

need to keep the number of samples to a minimum (to control cost) while still allowing a 
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reasonable level of map quality.  However, Gotway et al. found that the optimum grid density may 

depend on the coefficient of variation in the field in question (1996).  In many cases, where the 

spatial distribution is complex, much finer grid densities than those currently used commercially 

are required to produce accurate prescription maps. Tillage, field leveling, and rainfall events can 

reorganize soil horizons and result in exposed sub-surface horizons, buried surface horizons, 

mixing of horizons, and most importantly, loss or movement of the A and B horizons. These 

horizons are the most productive, fertile, have the highest water holding capacity in most soils. 

Understanding these edaphic trends across the field using a user-friendly and intuitive interface, 

farmers can specifically target "problem" areas, as well as understand where yield potential is 

likely to be highest.  Research by Mueller et al. has indicated that a common commercial grid 

sampling scale of 100 m2 was grossly inadequate and that soil sampling at greater densities only 

modestly improved prediction accuracy that would not justify the increase in sampling cost (2001).  

Their data suggest that the use of the field average fertility values at their research field was not 

substantially different than grid sampling.  Schloeder et al. demonstrated that spatial interpolation 

was usually inappropriate for grid sampled data with limited sample size (n = 46) (2001).  For 

most of their data sets the inability to accurately predict, could be attributed to either spatially 

independent data, limited data, sample spacing, outlier values, or unusually high sample 

variability probably attributed to inadequate understanding of the source(s) of variability.  

Research by Whelan et al. reported that in fields with less than 100 samples only very simple 

geostatistical interpretation methods such as inverse distance are appropriate (2015).  Sample 

sizes of 100 to 500 are needed for geostatistical methods such as kriging.  Kravchenko and 

Bullock, studied several interpolation techniques, such as ordinary kriging, lognormal kriging, and 

inverse distance weighting, and found the best geostatistical methods to use depend on unique 

spatial properties in each field and could not be predicted in advance (1999).  Research by 

McBratney and Pringle, reported that grid sampling at 20 m2 to 30 m2 scale is generally needed 

when applying site specific management at a resolution of 20 m2 (1999).  Mallarino and Wittry 

(1997) reported that cells larger than 0.8 ha in size usually did not represent nutrient levels 

precisely (1997). 
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Methods for Detecting Soil Nutrients Using Hyperspectral Sensors. 

Using advanced algorithms Soilyticsâ can convert hyperspectral reflectance data into 

usable information to serve the agricultural industry and potentially help us better understand the 

variability of soils in a more robust way over time. A Malvern Panalyticals ASD LabSpec was 

used to collect relevant data for the work, although off-the-shelf imaging equipment was used, 

the spectra wavelength and application are the result of several years of internal research and 

development. The sensor includes the hyperspectral sensor with contact probe, computer, and 

fiber optic cable (specifications in Table 1 below). 

 

 

Table 1 - Hyperspectral Scanner Properties - Malvern Panalytics ASD LabSpec (date and model number) 

Wavelength range                                                 350-2500 nm 

Resolution                      3 nm @ 700 nm  

6 nm @ 1400/2100 nm 

Scanning time                   100 milliseconds 

Signal-to-noise ratio               

Visible Near Inferred 9,000:1 @ 700 nm 

Short Wave Inferred 1 9,000:1 @ 1400 nm 

Short Wave Inferred 2 4,000:1 @ 2100 nm 

Photometric noise   

Visible Near Infrared 4.8 x 10-5 AU or 48 μAU@ 700 nm 

Short Wave Infrared 1 4.8 x 10-5 AU or 48 μAU@ 1400 nm 

Short Wave Infrared 2 1.1 x 10-4 AU or 110 μAU@ 2100 
nm 

Visible Near Infrared detector (350-1000 nm) 512 element silicon 
arrays 

Short Wave Infrared 1 & 2 detectors (1001-1800 nm) & (1801-2500 nm)  

Graded Index InGaAs Photodiode,  

TE Cooled 

 

The sensor must have a minimum operating range of 350 nm to 2500 nm to result in the most 

comprehensive results and the best correlation to soil parameter values. Compressed 
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Polytetrafluoroethylene (PTFE) White reference tile is used as a control to normalize reflectance 

data from the sensor at each sampling 

event with a minimum number of 

scans to assure that baseline is 

stable, and equipment is functioning 

within acceptable parameters. There 

are abiotic factors that our data shows 

have a strong impact on the precision 

and noise level of data acquired. 

These are: texture, water content, and 

minerology (especially clay content 

and clay minerology). The spectral 

reflectance data once collected, must 

be normalized based on these factors 

as they have significant impact on results. This also means that results concerning texture, water 

content, and minerology are significant results on their own and can be very useful when creating 

a management strategy. For instance: texture and clay type can give clues about availability of 

certain cations and can provide information after being combined with pH data to inform nutrient 

availability. The variability of water content across the field when combined with texture and 

minerology data can point to areas in the field that are more likely to cause water stress or be 

particularly good at infiltrating or storing water or provisioning nutrients into the soil solution. After 

these abiotic factors have been properly controlled for the baselined data can then be processed 

into heat maps and actionable prescription maps (See Figure 1). From this data we have 

determined that use of the wavelength range of 350-2500 nm have resulted in the best 

prescription map outcomes and improved efficiencies for the farmer or land manager. We have 

seen excellent results especially with pH measurement and subsequent lime application in forage 

systems in Montana (Hubbard Field Trial, 2018-2021). Since limiting factors on confidence 

required additional spectral bands to properly baseline. Hyperspectral technology allows for quick 

Figure 1  Example heatmap generated from hyperspectral imaging and Soilytics 
analysis for pH in Marshall Field Trial (2020-2021) 
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and easy data processing at a cost-effective rate. The sample data can then be uploaded directly 

to the labs or farm equipment for rapid decision making and proactive farming decisions while 

eliminating delays caused by collection, shipping, and analysis compared with traditional lab tests. 

It will serve the precision agricultural market by improving fertilizer application and efficiency. Our 

technology will help farmers increase and reduce the variability of crop yields, optimize input 

costs, and improve environmental protection by reducing unnecessary fertilizer applications.  

Results and Discussion 

Internal Trial 1 – Hubbard Field – The Promise of Hyperspectral Approaches 

An internal trail with a forage production operation in the Hubbard Field Trial in Montana 

resulted in a lime application to neutralize acidic soils for improved plant growth (2018-2021). 

Lime was applied on 107 acres vs 220 because of more precise pre-application pH data sets to 

predict the variable spread of the lime.  

 

Figure 2 - Map of soil zones (n=37) used to predict pH in the Hubbard field trial 2018-2021 (left) density of data points 
(n=69) collected using hyperspectral approach resulting in heat map for precision lime application (right) 

The savings generated using hyperspectral soil analysis was $21,879 in lime, $1,739.75 in lab 

analysis. Meanwhile the grower received 69 sample points rather than 37 sample points.  Cost 

savings is only part of the value, Crop Productivity Index (CPI) or a measure of the variability of 

yield from year to year with 100 being the mean value for that cropping season. The results for 

CPI in the Hubbard field Trial were: 

2018 – 24-point difference (improvement) in CPI values 

2021 – 4-point difference (improvement) in CPI values 
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Figure 3 - pH heatmap created using hyperspectral approach (Left) vs heatmap previously used using zoned sampling 
approach (Right). 

The change observed was from over 47% of the field with below optimal pH in 2016 to 1.6% of 

the field below optimal in the 2021 growing season. A more recent internal trial also observed a 

dramatic increase in nutritional value (including protein content) of the forage crop after improved 

data was used to apply nutrients. However, some of this improvement may be due to other 

covariables such as seed genetics, climatic conditions, and pest load.  

 

Internal Trial 2 – Marshall Field – Eliminating Limiting Factors 

An internal trail with a forage production operation Montana (Marshall Field Trial 2020-

2021) resulted in a sulfur application to help balance pH. The field was 160 acres previously 

planted in hay. Application maps had previously been zone sampled based on NDVI satellite 

imagery for multiple years of data. When mapped using hyperspectral approaches and the 

SoilyticsÒ platform, 81 data sets generated made managers able to easily see that the zoned 

areas did not coincide with actual nutrient levels across the field. The addition of more data density 

(3 zones previously to 81 data points after hyperspectral imaging) resulted in much better 

precision application now being possible. 
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Figure 4 - Heat-Maps of plant essential nutrients created using hyperspectral imaging and 81 data points (Marshall Field 
Trial 2021). 

According to Liebig’s law of minimums, plant health and associated yield are limited by 

the scarcest essential nutrient (limiting factor) which is analogous to the requirement of amino 

acids in the human diet (von Liebig, 1850). Using a cost-effective way to not only determine the 

precise levels of nutrients and how much to amend a field is valuable but understanding the 

spacial distribution of the nutrient in question or areas where it might be totally lacking, we expect 

would be an even more powerful and effective tool. Imagine a flood or land-leveling event took 

place and the manager wants to understand how nutrients might have been moved or removed 

from the field or where they might have been deposited. Using this approach might be a cost-

effective way to survey the relative levels of essential macro and micro-nutrients and determine if 

certain areas of the field need amendment without wasting money and time amending the whole 

field "just to be safe." Improving these types of decision scenarios is the main promise of this 

technology from our vantage point. In the Marshall field trial discussed above, the agronomist in 

charge was able to make a better determination of the limiting factor in the field and determined 

that the sulfur application was the best solution to lagging yields. With the variable application the 

farmer was able to save $1,310 in input costs and decreased 3.7 tons in fertilizer volume. Variable 

rate application vs. applying flat-rate saved the grower $13.06/ac. Identifying the area of need 

across the field enabled greater uniformity yields and increased overall crop production.  

Internal Trial 3 – The Future Promise of Hyperspectral Approaches  

The ability to correctly use variable rate technology will depend on testing methods to 
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determine how the 4R’s (Right Source, Right Rate, Right Place and Right Time) are applied to a 

field (Savidge & Geisseler, 2022). The ability to use hyperspectral data for more detailed mapping 

of nutrients can help save farmers money without risk of lagging yields by better defining fertilizer 

application areas. The savings resulting from variable rate technology on 7 fields once (see Table 

2 below) again proves years of trials showing that more granular testing results in lower net-costs 

and higher yields. Hyperspectral technology using the SoilyticsÒ method can help reduce lab costs 

even more while providing many if not all the benefits we have discussed. 

Table 2 - Economic Savings from field trials using Soilytics and hyperspectral approach. 

 

 

Summary 

As we continue to demonstrate, no one grid size or interpolation technique perfectly describes 

the soil nutrient/pH variability that exists in any field.  If one fails to sample at a fine enough 

resolution to capture the spatial correlation in crop nutrient data, the interpolation methods and 

application maps developed from those methods will not be valid or accurate (Reich, 2000).  

However, the cost associated with grid sampling to the intensity required for accurate maps is 

prohibitive for chemical analysis in many cases, whereas the use of hyperspectral soil analysis is 

much more economically efficient.  
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of hyperspectral approaches to soil analysis and interpretation. We believe that giving more 

information to farmers to empower their decision making is not only an economic benefit to them, 

but also has the promise to improve the environment by reducing the externalities inherent in 

some agricultural practices.  

Works Cited 

Court Hill Farm Research Ltd. (2022, April 26). Analytical Services and Price List. Price and Services 
Information Website Https://Www.Hillcourtfarm.Co.Uk/Index.Php?Go=page&page=analytical-
Services-and-Price-List. 

Ferguson, R. B., Gotway, C. A., Hergert, G. W., & Peterson, T. A. (2015). Soil Sampling for Site-
Specific Nitrogen Management. 13–22. https://doi.org/10.2134/1996.PRECISIONAGPROC3.C2 

Gotway, C. A. (University of N. L. N., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). 
Comparison of kriging and inverse-distance methods for mapping soil parameters. AGRIS - FAO. 
https://agris.fao.org/agris-search/search.do?recordID=US9629769 

Kravchenko, A., & Bullock, D. G. (1999). A Comparative Study of Interpolation Methods for Mapping 
Soil Properties. Agronomy Journal, 91(3), 393–400. 
https://doi.org/10.2134/AGRONJ1999.00021962009100030007X 

Mallarino, A. P., & Wittry, D. J. (n.d.). IDENTIFYING COST-EFFECTIVE SOIL SAMPLING SCHEMES 
FOR VARIABLE-RATE FERTILIZATIONAND LIMING. 

Mcbratney, A. B., & Pringle, M. J. (1999). Estimating Average and Proportional Variograms of Soil 
Properties and Their Potential Use in Precision Agriculture. Precision Agriculture 1999 1:2, 1(2), 
125–152. https://doi.org/10.1023/A:1009995404447 

Mueller, T. G., Pierce, F. J., Schabenberger, O., & Warncke, D. D. (2001). Map Quality for Site-Specific 
Fertility Management. Soil Science Society of America Journal, 65(5), 1547–1558. 
https://doi.org/10.2136/SSSAJ2001.6551547X 

Savidge, M., & Geisseler, D. (2022). The 4 Rs of Nutrient Managment. The 4 Rs of Nutrient 
Management. 

Sawyer, J. E. (1994). Concepts of Variable Rate Technology with Considerations for Fertilizer 
Application. Journal of Production Agriculture, 7(2), 195–201. 
https://doi.org/10.2134/JPA1994.0195 

Schloeder, C. A., Zimmerman, N. E., & Jacobs, M. J. (2001). Comparison of Methods for Interpolating 
Soil Properties Using Limited Data. Soil Science Society of America Journal, 65(2), 470–479. 
https://doi.org/10.2136/SSSAJ2001.652470X 

UC Davis Analytical Lab. (2022, April 26). UC Davis Analytical Lab Price List. Current Prices 
Information Page Https://Anlab.Ucdavis.Edu/Prices. 

von Liebig, J. F. (1850). Chemistry, and Its Application to Physiology, Agriculture, and Commerce. 
Fowlers and Wells. 

Wallace Labs. (2022, April 26). Price List for Services/Fees Wallace Labs. Fees - Soil Analysis - 2022 
- Information Page Https://Wlabs.Com/Services/Price-List-of-Services/. 

Whelan, B. M., McBratney, A. B., & Rossel, R. A. V. (2015). Spatial Prediction for Precision Agriculture. 
331–342. https://doi.org/10.2134/1996.PRECISIONAGPROC3.C37 
  



 

Proceedings of the 15th International Conference on Precision Agriculture 
June 26-29, 2022, Minneapolis, Minnesota, United States  

12 

 


